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The framework of the linear mechanics of liquid crystal media 1] is used to
study propagation of waves in a layer of a nematic liquid crystal (NLC) on an
inclined plane, in a magnetic field, for three different cases of orientation of the
anisotropy axis, namely orthogonal to the inclined plane, parallel to the inclined
plane and orthogonal to the plane of flow, Such orientations of the anisotropy
axis are realized in practice in the course of special machining of solid surfaces
[2]. Exact solutions of the equations of motion are obtained describing the steady
flow of the layer, and the behavior of small plane perturbations is studied, It is
shown that two types of plane waves can propagate in a layer of the nematic
mesophase, namely, the surface and the orientational waves, In the case of long
surface waves the formulas for the critical Reynolds number are obtained, For
the orientational waves a sufficient criterion of stability of the flow in the layer
is obtained for two cases. The influence of the magnetic field and of the rheo-
logical parameters of NLC on the character of propagation of the first and second
type waves is investigated,

From amongst the papers dealing with wave propagation in NLC, we draw the
readers' attention to [3] which deals with the longitudinal, shear and torsional
waves in a liquid crystal domain and obtains the corresponding dispersion rela-
tionships,

1, Equations of motion of NLC, Let us write the equations of motion of
the incompressible nematic mesophase in the dimensionless form, for the case when the
angle between the axes of nematic orientation is small [1]
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Here #;, %y, ¥3 and ¢ are the dimensionless Cartesian coordinates and time; v; are
the components of the velocity vector and p is pressure relative to v, and pvg? . respec-
tively; L; are the components of the unit anisotropy vector, @ is the mean rate of ro-
tation of molecules about their central axes parallel to L. and relative to v,k 1y,
Ny, « - ., Mo are the viscosity coefficients; J, and J are constants characterizing
the local moments of inertia of the medium ; dyq10, @19015 G1122 20nd dyg;5 are the mo-
duli of elasticity; p is density, v, is the characteristic velocity ; k is the characteris-
tic dimension; f; and m; are the components of the volume force vector and the volume
momentum, respectively,

The equations of the linear mechanics of NLC given above are written in the coordi-
nate system , the axis x, of which is directed along the L-axis in the undeformed state
[1]. Therefore in all the cases which follow the homogeneous magnetic field of strength
H which preserves the orientation of the L-axis, will be assumed as directed along the
4 -axis,

2, Anisotropy axis orthogonal to the inclined plane, Let uscon-
sider a layer of nematic mesophase of thickness s, flowing down the inclined plane
under the gravity, We assume that near the solid surface the longitudinal axes of the
NLC molecules are oriented along the normal to this surface, Let us introduce the right
Cartesian ,, &,, ¥ coordinate system with the origin at the layer surface, the Z,- and
z5-axes directed along a line of steepest descent and inside the fluid, respectively, Then
the equations of motion (1, 1) admit the following exact solution describing a steady flow

in the layer: v’ = 3/, (1 — z5?), p° =38Rz, ctg v + po (pv2)t 2.1

L, =3/ 'R (85 + 84 — ;) [(m ch m)™* (m — sh m)ch mxy; +

m™ shmz,— 4]
=0, % =AmPHR, Ay =%y — %1

m = hH (Aydi3157")", ve = '/30gM5th? sin y
Here p is the angle of inclination of the plane to the horizon, p, is the atmospheric
pressure, g is acceleration due to gravity and Ay is the anisotropy of the magnetic
susceptibility, The solution (2.1) is obtained under the boundary conditions of adhesion
at the solid surface and the absence of the torque and shearing stresses at the free surface,
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Let us investigate the stability of the steady flow with respect to small periodic per-
turbations,

We note that the Squire's theorem [4] holds for the orientation of the anisotropy axis
defined above, To prove this it is sufficient to write the equations of motion linearized
in the usual manner 5] and the boundary conditions for the NLC layer in a coordinate
system obtained from the initial system by rotating it about the z3-axis in such a man-
ner that the #:'-axis of the new system is orthogoral to the expansion front of the
three-dimensional wave, At the same time we find that the equations controlling the
stability correspond to 2 plane flow of the layer with the velocity profile »:2°cos [,
where f is the angle between the 2, - and z2'-axes, For this reason we only need to con-
sider the plane perturbations while investigating the stability,

Let us denote by ©’, L,", L,’, u/, +' and ' the corresponding perturbations in the
natural angular velocity of rotation of the molecules and the projections of the unit ani-
sotropy vector and the velocity vector on the x;, Z,, Z; coordinate axes, It can easily
be shown that in the case of plane perturbations the linearized equations of motion and
the boundary conditions can formally be separated into two independent groups defining
the behavior of the perturbations v, w’, L, and ', L,, ' ,r1espectively, From the
physical point of view this means that two unconnected kinds of plane waves may pro-
pagate in the layer of the nematic mesophase, Let us set

v o= g—;{; , W= — %1% v P = @ (ay) et vedd) (2.2)
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Here ¢, L,*, L,;*, u* and w* are complex amplitudes of the perturbations,  is the
stream function and o is a dimensionless wave number, while ¢, and ¢, are the com-
plex velocities of propagation of the first and second type waves, Then we have the fol-
lowing two boundary value problems for the complex wave amplitudes
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Here S is the coefficient of surface tension relative to pv,2h. In the course of deriving
(2. 3) and (2, 4) it was assumed that J; = Jy =0, which is physically justified for
the NLC media [1] by virtue of the smallness of the local moment of inertia,

Equations (2, 3) correspond to the ', w', L,’ perturbation wave which by its nature,
is analogous to a surface perturbation wave in an ordinary viscous fluid, On the contrary,
the u’, L,", ® perturbation wave has no relation to any distortion of the free surface
and is of predominantly orientational character, In a wave of this type the oscillatory
translations of the molecules in the z,; direction vary periodically with respect to z, and
time, The molecules rotate about their long axes of inertia as well as about the z, direc-
tion, The possibility of propagation of such waves depends essentially on the presence
of the rotational degrees of freedom in the liquid crystal and on the anisotropic structure
of the NLC media,

Let us study the behavior of the long-wave surface perturbations, using the method of
consecutive approximations [6, 7] to solve the boundary value problem (2, 3), Restrict-
ing ourselves to the first two approximations, we write @, L,* and ¢ in the form

¢ =@ Fag, L*=IL+ta, ¢ =¢"+aqg (2. 5)
Substituting (2, 5) into (2. 3) we obtain the following expressions for the zero approxima-
tion
! P = (23 — 1)%, 1, =R (x ch m)™ (85 + 8, — 8,) X (2.6)
{l(m — sh m)thm — 1lch mzz — (m — sh m)sh mz; + chm}
clo =3

The next approximation gives the following expression for ¢;:
¢y =1 {6,7'R [*g (e chm)™ (85 + 84 — 8,)*® (m) + %] — ctg y} (2.7
© (m) =Y3m®Dy + m*Dy — mshm (D, + Dy + Dy) + mD, —
(chm + Yym?* —4)(D, —Ds) — mchm(D, -+ D,) + Dyshm
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Dy =m?{(m —shm)thm + chm — 1]

Dy = —4m™ [(m — sh m) (th m + Yym) + ch m — 1)

Dy = -2m2chm, Dgy=4m3chm

D5 = (6 + m*)m™ [(m — sh m)th m + ch m — 1] + 4m™ (m — sh m)

This at once yields the formula for the critical Reynolds number
Ry* =8, 11 -+ 1/ 4(Bym?® ch m)™ (8, + 8, — 8,))® (m)I"'R* (2,8)

where Ry* = %/gctg 7 is the critical Reynolds number for a layer of an isotropic
Newtonian fluid [6].

Let us find the order of quantities entering (2, 8), As we know from [1], the case when
the angle between the axes of the nematic order is small, requires a sufficiently large
magnetic field, Since for the NLC media we have Ay ~ 107® cmi®/g and dyq, ~
10~¢ dynes,then m ~ / and must also be large, It can easilir be shown that when m
increases, the expression (m® ¢ch m)™ @ (m) — —0 as m™. Consequently, assuming
that the viscosity 1, — 107% poises, we obtain B, ~ 10 which implies that a mag-
netic field of several hundred oersteds is sufficient for | (Bgm?® ch m)™ @ (m) | < 1.
Since by virtue of the anisotropic character of viscosity of the NLC §, > 1 [1, 2], the
coefficient accompanying R,* in (2. 8) is always greater than unity, This means that
the flow of the NLC layer under the specified orientation of the anisotropy axis is always
more stable with respect to the surface perturbations than the flow of a layer of Newton-
ian fluid, An increase in the strength of magnetic field reduces the value of H;*. At
the same time lim R,* = §,Ry*, which agrees with the result obtained in [8}, namely,

Hooo

that when H - oo, the flow of nematic medium becomes identical to that of an ordi-
nary Newtonian fluid of viscosity 7.

The destabilizing influence of the magnetic field on the behavior of the surface per-
turbations can be explained as follows, The hydrodynamic flow exerting a significant
orienting influence on the structure of the NLC causes a nonuniform orientation of the
molecules across the layer thickness, In the case when the angle between the axes of
nematic order is small, which was considered above, the deviation of the orientation of
the liquid crystal molecules in a steady flow from the orientation prevailing near the
solid surface, is determined by the quantity [,°. On the contrary, the magnetic field
acting in the direction parallel to the anisotropy axis near the wall, tends to produce a
uniform orientation of the molecules right across the flow and thus exerts a competing
influence, This leads to reduction in the hydrodynamic stability of the flow with respect
to the surface perturbations,

From (2. 8) it follows that increasing the modulus of elasticity d,,,, reduces the value
of Ry*. Consequently the elasticity of NLC affects the stability ot the flow just as the
magnetic field does, On the contrary, increasing the value of the viscosity coefficient
1);stabilizes the flow,

‘Let us turn our attention to the boundary value problem (2,4) for the amplitudes of
the orientational type perturbations, Formal application of the algorithm of the asymp-
totic expansions {6, 7] in the wave number o to the system (2, 4) does not produce the
desired result, as the zero, first and all further approximations to the perturbation ampli-
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tudes are identically zero, However, using the approach analogous to the Synge's method
in the theory of hydrodynamic stability of a viscous fluid [4], we can obtain a sufficient
condition for the stability of the NLC flow relative to the orientational waves., Let us
multiply the second equation of (2,4) by L,*, which is the complex conjugate of L,*,
and integrate the result in &3 from zero to one, Separating the real part of the resulting
expression we obtain ’ 1
Bulest = o7 { (85 + 8, — 8a) | (

0

R (xIy + 02 (By + B I + 3412]}

du*
dxs

El* -—l—— %’::‘Ll*) dx3 b 2. 9)
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11=S|L1*l2dx3, 1225
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Here ¢, is the imaginary part of the complex wave velocity Cp- Using the estimate
1
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0

we obtain from (2, 9) the following condition of attenuation of the orientational waves
. 2[%+d2 (Bl+ Bs)]]1+ 2Byl
R<m1n{ (63 + 84— 62) In } (2.10)
Thus, when the Reynolds number is sufficiently small, the orientational type perturba-
tions attenuate, In addition, as we see from (2, 9), the magnetic field and the elasticity
of the liquid crystal are stabilizing factors, Consequently the magnetic field as well as
the elasticity of NLC exert a reverse influence on the development of the corresponding
surface and orientational type perturbations,

3, Axis of anisotropy parallel to the inclined plane, Considerthe
case when the axis of anisotropy of NLC is situated in the plane of flow near the solid
surface, and is parallel to this surface, Let the x4 -axis be directed along the line of the
steepest descent, and the x;-axis along the normal to the solid surface inside the fluid,
Using this coordinate system we find, that the steady flow of the layer is described by the
following solution of the equations of motion (1,1):

0 =y (1 —ay?), P =38, otg y + pa (prad)™ 3.1)
L =3/ R(8, + 84 — 83) Imy(chmy)™? (sh my — my) chmy 2, —
m,™ sh mz, + 4l

©° =0, my =hH (Axd;p, "), va ='/3pgn, k" sin y

Let us study the behavior of the small perturbations independent of the coordinate z,,
As in the previous case in which the axis of anisotropy is orthogonal to the inclined plane,
the linearized equations of motion and the boundary conditions for the perturbations can
be separated into two mutually independent groups corresponding to the surface waves

and the orientational waves, Retaining the previous notation for the perturbations, we set
' 3‘P 4 a‘b i
. - ___r — (xs—cylt)
W= Y g P = @ (@) e (3.2)
Lll — Ll* (11) eia (x;—cll), Lzl — Lz* (xl) et (Xs—Cat)
U= p* (xl) el (va=caf) ® = n* (11) el (xz~cst)
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and agam oonstruct two boundary value problems, the problem corresponding to the sur-
face u’, w', Ly’ perturbation wave and the problem corresponding to the orientational
v, Ly, ® perturbation wave, If we take the equations of the boundary value problem
for the amplitudes of the surface perturbations and replace the parametets ;5,,, 1,
by dy312, Mg and vice versa, the resulting equations become the boundary value prob-
lem (2, 3), Therefore, using the results of Sect, 2, we obtain the following expression for
the criticalReynolds number of the flow in question:

Ry* =8, 11 + 1/ (Bymy® chmy)™ (8, + 8, — 8:)20 (m)I"'R* (3.3)

The effect of the magnetic field and the modulus of elasticity on the above relation was
discussed previously, We only note that limp_,.ft = §, Ato* which also agrees with
the result of [8],

The boundary value problem for the amplitudes of the orientational perturbations can-
not be reduced to Egs, (2,4), and must be considered separately, The problem has the

f
orm Ly

(Bs + B1) 5 — (% + 0By + iaR8 (v5° — ¢5)] Ly* + (3.4)
fiaﬂ(63+64_62)v* =0
42
8 T — (%810 + 28 0% + 8, 2% — (3.5)
a2 dw*
dx;’, — [028y + iR (05" — )] v* — B4 il“;l + (3.6)

1
‘z‘az (63 + 64 _ 62) (Z/’f;c - (:2) Lz* == 0

L*(1) = v* (1) = o*(1) = de;‘;l(()) — dL;:l(O) —0 (3.7
dv* (0)/dzy — 850* (0) = 0

Applying to (3, 4) the case discussed in Sect, 2, we obtain the following sufficient crite-
rion of stability of the flow with respect to the orientational waves:

. 2 [(Bﬁ -+ Bl) Is ~- (K b a‘zB.;) Is}
R < min { (83 -+ 84— 02) Is } (.8)
1
14 ==
;

From (83, 8) it follows that an interval of variation in the values of o and R for which
the orientational type perturbations decay, always exists, The dimensions of this inter-
val increase with the increasing values of the moduli of elasticity of NLC and the mag-
netic field strength,

Let us consider the behavior of the long orientational waves in the case when the co-
efficients of rotational viscosity §; is negligibly small {1]. Multiplying (3.6) by 7*
and integrating in z, from zero to one,with the boundary conditions taken into account,
we obtain (neglecting the terms containing a?):

1 1
dLy* 2dx1, I, = SIL2* lzdxn I = Slv* l ‘ L2*] day
0 0

dx

1
aRIsesi = — I; — iaR\ (vs® — &) |v* [ dy (3.9)
0
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d 1, Iy = \|v*Pdzy

I= 5 dm‘l
0

O

Here ¢, is the real part of the wave velocity ¢,. The imaginary part of (3, 9) gives
1
oR S (Ugo - Czr) ] v* Izd.'[l = O
]
from which it follows that the difference v,° — c¢,” changes its sign in the interval
(0, 1). Consequently the velocity of propagation of the orientational type wave satisfies,
in this case, the inequality 0 < ¢,” <7 ¥/,. Separating the real part of (3, 9) we obtain

et = —I; (aRI)™ <0
Thus, when the rotational viscosity is absent, the long orientational waves always decay,
We also note that when 6 = 0, Eq, (3, 5) and the boundary conditions (3, 7) together

imply that w* = 0,1, e, in this case the orientational waves do not induce the rotation-
al oscillations of the molecules,

4, Axis of anisotropy orthogonal to the plane of flow, The steady
flow of the layer is described by the following relations:
v = K {1 — 2> 4+ 8;n7% [(ch n)™ (n — sh n) sh nz, + (4,1)
ch nx,) — 85 (n?ch ) (nsh n 4+ 1)}

° = K [z, — (nch n)™ (n — sh n) ch nz, — n™" sh nay

° =2 —85)R Kz, ctg y + pa (pvo*)7

K =[%, + 8sn7% (1—2 (ch n)™ + (n ch n)™ sh n (1 — n*)I™?

n o= [80071(2 — 8:)", vy, =K (2 — 8;5))7p gh®siny

The solution (4, 1) is written in the coordinate system in which the z;-axis is directed
along the line of steepest descent and the z, -axis is directed into the layer, Assuming
that the small perturbations are independent of the coordinate z,, we linearize the equa-
tions of motion and the boundary conditions for the layer, Setting
u = 3_5‘3’2 , Vo= — g_;% , 1*) — CP(Iz) ela (x—eit) 4,2)
o = f(xy) eix Ciod) = ¥ () e e

th — th (1‘2) pix (x:—cst), Lz' — Lz# (.’L‘g) £i (xy=cal)
we obtain the following equations for the complex amplitudess
di d
Toa — 202 (p =+ ale zaR[(vl —cl)(———«oc?cp) . (4.3)

d2vy

(pdw22]+65(d2/’“o7%§)
8 (7o — /) + 8 (0 — 2. — 27) =0

o) =1L — jy=0
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28, L0 a8y + 8, — 8) (0" (0>——62>L2*<0>*
(Bl + B5)M

hana iCLBgL2* (0) =5 0

The system (4, 3) describes the behavior of the surface perturbations and (4, 4) the beha-
vior of the orientational perturbations, We note that when §5 = 0 , the first equation
of (4, 3) becomes the Omr-Sommerfeld equation and the boundary conditions for @ assume
the form of those in the problem of the stability of flow of a layer of a viscous Newton-
ian fluid [6],

Let us construct the solution of the boundary value problem (4. 3) for the case of the
long waves, Writing @, / and ¢y in the form of series in powers of ¢, we obtain the
following zero order approximation for the rate of propagation of the surface perturba-

doms: o 50 (0) 4+ K (ch m)t[ch n +4 85072 (ch 1 — 1) —
8sntsh nl — K85 (nch n)? (n — sh n)?
The next approximation gives the expression for the critical Reynolds number
R.* =G (b5, 8y) ctg v
where G (83, 8;) isa certain function of the parameters § ;jand §,. Thus the critical
Reynolds number of flow for surface waves depends only on the coefficients of rota-

tional and moment viscosities §; and §, and is independent of the magnetic field
strength, This is connected with the fact that under the present orientation of the axis
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of anisotropy (4. 3) implies that the surface perturbation wave is not accompanied by a
distortion in the oriented structure of the layer,

10

a8

04
310

305

a6y \

3 UDJZ

[ RF Numerical computations were performed

2 on the computer BESM-4 in order to clarify
the influence of the parameters 0 5 and Oy

— on R,* and ¢,°,and the results are depic-

ted in Fig, 1, The curves 1—4 correspond

to the values of 8= 0,01, 0,1, 1, and 10,

The curves show that the rotational viscosity

hasa destabilizingeffect on the flow,while the

moment viscosity enhances stability, When

8 5=0,we have R3*=5/; ctg ¥y which corre-

sponds to the value of the critical Reynolds num-

ber for a layer of the Newtonian fluid, The

velocity of propagation of the surface wave

¢,” increases with increasing § ; and decrea-

ses with increasing §,. Moreover, when

I 85 5= 0, we always have ¢,” > 3.

g azs a5 ars 4 In conclusion we note that the method of
Fig, 1 long wave approximations [6, 7] cannot be

applied to the system (4, 4), nor to the sys-

N\

tems (2, 4) and (3,4)—(3, 7)., We also cannot obtain for this particular orientation of the

axis
ty pe

of anisotropy, the sufficient criterion of stability for the orientational waves of the
(2.10) and (3, 8), For this reason the boundary value problem (4, 4) requires addi-

tional investigation,
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